An accurate design of graphene oxide ultrathin flat lens based on Rayleigh‐Sommerfeld theory

Graphene oxide (GO) ultrathin flat lenses have provided a new and viable solution to achieve high resolution, high efficiency, ultra-light weight, integratable and flexible optical systems. Current GO lenses are designed based on the Fresnel diffraction model, which uses a paraxial approximation for low numerical aperture (NA) focusing process. Herein we develop a lens design […]

Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing

Nanometric flat lenses with three-dimensional subwavelength focusing are indispensable in miniaturized optical systems. However, they are fundamentally challenging to achieve because of the difficulties in accurately controlling the optical wavefront by a film with nanometric thickness. Based on the unique and giant refractive index and absorption modulations of the sprayable graphene oxide thin film during […]